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Introduction

RNA-Seq approaches, based on high-throughput sequencing 
technologies, are becoming an essential tool in transcriptomics 
studies (ref. 24). In the beginning, its ability to capture transcrip-
tome dynamics (across different tissues and conditions) without 
sophisticated normalization of data sets was considered as a par-
ticular advantage over other techniques. Nevertheless, it was found 
that a normalization preprocessing step can significantly improve 
the quality of the analysis. Therefore, the effect of normalization 
was rigorously studied and many works related to this issue have 
been published in recent years. Notably, an evaluation of statisti-
cal methods for normalization in mRNA-Seq experiments stressed 
(ref. 2) the requirement for further research in the development of 
statistical and computational methods dedicated to the processing 
of mRNA-Seq data. In particular, Bullard, Purdom, Hansen and 
Dudoit (ref. 2) demonstrated the impact of the choice of the nor-
malization procedure on the Differential Expression (DE) analysis.

In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational 
methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is 
known that the choice of a normalization procedure leads to a great variability in results of differential gene expression 
analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming 
at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization 
procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the 
different normalization methods, show that only 50% of significantly differentially expressed genes are common. This 
result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data 
sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including 
the novel method named “Median Ratio Normalization” (MRN) gives the lower number of false discoveries. Within this 
group the MRN method is less sensitive to the modification of parameters related to the relative size of transcriptomes 
such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MRN method 
efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated 
data sets confirmed that MRN is more consistent and robust than existing methods.
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Many of the normalization methods proposed in the litera-
ture are based on the correction of biases and “artifacts” directly 
related with RNA-Seq technology. For instance, the read (or 
fragment) number per lane and the gene (or RNA) length are 
trivial biases that have been pointed out very early (refs. 11, 12, 
and 25). Sequencing depth is another trivial and important bias 
highlighted in reference 19. Other technical biases, such as non-
uniformity of the distributed reads within the transcripts, and 
the strong sample-sp.ecific GC-content effects on read counts, 
were later studied in references 15, 14, and 9.

The present paper focuses on another significant bias in RNA-
Seq experiments that is not introduced by the technology, but is 
rather intrinsic to the studied transcriptomes. It is shown here 
that the relative size of studied transcriptomes represents an 
important bias and that a particular normalization procedure 
is needed to address this issue. The aim of the present study is 
therefore to propose an improved version of an existing normal-
ization method and to evaluate its performance on simulated and 
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Evaluated Normalization Methods

The present paper evaluates a number of normalization methods 
designed to resolve (directly or indirectly) the bias induced by the 
relative size of studied transcriptomes.

First, methods directly addressing this issue are taken into 
consideration. The Trimmed Mean of M-values (TMM) method 
(developed in ref. 17) deals with estimating the “relative RNA 
production of 2 samples” under the assumption that the majority 
of genes are not differentially expressed. This method is imple-
mented in the edgeR package available from the Bioconductor 
website at http://www.bioconductor.org (see refs. Sixteen and 
7). Similarly, Anders and Huber (ref. 1), proposed a normaliza-
tion method based on “size factors” that renders counts from 
different samples comparable. This method is called “Relative 
Log Expression” (RLE) and is implemented in edgeR and DESeq 
packages (available from the Bioconductor website).

Second, we evaluate 4 normalization methods that do not 
directly aim at removing this bias. Instead, they are dealing with 
normalization of the read counts in order “to adjust for varying 
lane sequencing depths and potentially other technical effects” 
(see ref. 2 and references therein). These are the Upper Quartile 
normalization (UpQu), the Median normalization (Medi), the 
Total Counts normalization (ToCo) and the FPKM normal-
ization (refs. Two and 22). While in the UpQu normalization 
method, counts are normalized by division (in a given replicate) 
by the upper quartile of these counts, the Medi simply computes 
the median, and the ToCo uses the sum of all counts. Finally, 
the FPKM normalization method normalizes raw counts by both 
the length of the gene and the total counts. In addition, for this 
normalization method, the obtained quantities are multiplied 
by 109 in order to obtain “fragments per kilobase of transcript 
per million fragments mapped” abbreviated as FPKM (see refs. 
Eleven and 22).

We compare the performance of all methods mentioned above 
against “No Normalization” (NoNo) and against our proposed 
method called “Median Ratio Normalization” (MRN). The 
MRN method follows the idea behind TMM and RLE normal-
ization methods aiming at removing the bias due to the relative 
size of studied transcriptomes.

In total, 9 normalization methods, used for the DE analysis, 
were compared: TMM, TMM50 (TMM with 50% of trimmed 
M-values), RLE, UpQu, Medi, ToCo, FPKM, MRN and NoNo.

Materials and Methods

This section is divided into 4 independent parts. The first part is 
devoted to the description of the MRN procedure. We explicitly 
show, in this part, how the MRN procedure overcomes the bias 
due to the relative size of studied transcriptomes. The second part 
presents the pipeline used in this paper for the DE analysis. The 
third part describes the algorithm used to simulate RNA-Seq 
data sets that will be used to compare the normalization meth-
ods described above. Finally, the last part describes the tomato’s 
RNA-Seq data set studied in this paper.

real data sets. The newly established method named “Median 
Ratio Normalization” (MRN) is then compared with normaliza-
tion methods that have been described in the literature (refs. 17, 
1, and 2).

Bias Related to the Relative Size of Transcriptomes

Thereafter, we will refer to different biological states of a given 
studied transcriptome as conditions, and to independent biologi-
cal samples of a given condition as replicates.

Let X
gkr

 be the observed number of reads (or count) of gene g Σ 
{1,…G} in condition k Σ {2,…,K } for replicate r Σ {1,…,R}; μ

gk
; 

the expectation of the true and unknown number of transcripts 
of gene g in condition k; L

g
 the length of gene g; and N

kr
 the total 

number of reads in condition k for replicate r. As described by 
Robinson and Oshlack (ref. 17), among others, we can model the 
expected value of X

gkr
 as:
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For each gene g, an approximation of the expected value of 

the ratio between 2 conditions, say 1 and 2, is given by the delta 
method (see, for example, ref. 23) as
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As our interest is gene expression fold change, it is obviously 
given in the above equation (3) by μ

g2
/μ

g1
Then, ratios N

2r
/N

1r
 

and S
1
/S

2
 are the biases introduced, respectively, by RNA-Seq 

technology and by the relative size of studied transcriptomes. The 
former bias can be easily corrected by division of the observed 
counts (in condition k for replicate r) by the total number of reads 
N

kr
 before the ratio calculation. The latter bias is related to the 

relative size of studied transcriptomes and cannot be removed 
directly because the values referring to μ

g1
 and μ

g2
 are obviously 

unknown. It is shown here that, for a given experiment, this bias 
is not directly related to the technology, but rather to the stud-
ied transcriptomes. Robinson and Oshlack (ref. 17) also clearly 
show this bias and they give a solution which seems neverthe-
less less robust than the one we propose. However, it is impor-
tant to mention that the implementation of the MRN method 
requires taking into account a biological assumption based on 
(but less restrictive than) that made previously in reference 17. 
This assumption states the following: in transcriptomes under 
study, less than 50% of the genes are upregulated, whereas less 
than 50% are downregulated. We detail in the Methods section 
(subsection Median Ratio Normalization Method) the interest of 
such an assumption.
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Computations of MRN, FPKM and ToCo normalization meth-
ods were implemented by us and provided within a supplemen-
tary file (see Supplementary Materials).

For the DE analysis, an error model based on the Negative 
Binomial distribution was used, with variance and mean linked 
by local regression. This model is well suited for modeling count 
data dispersion (refs. 3, 6, and 10) and is implemented in edgeR 
and DESeq packages. In this study, we used the 2 functions esti-
mateDispersions() and nbinomTest() of the DESeq package. The R 
program for the DE analyses is also provided in a supplementary 
file (see Supplementary Materials).

Simulation of RNA-Seq data. Simulated RNA-Seq data sets 
for K = 2 different conditions and R = 3 biological replicates were 
generated by the following 2-steps procedure.

Step I. This step deals with the simulation of gene expression 
values μ

gk
 for both conditions 1 and 2. The input consists of vari-

ous parameters, some of which are not fixed (underlined parame-
ters) and allow the simulation of different data types by changing 
their values. The aim of this step is to start from simulated M and 
A-values (from Log-Normal and Normal distributions respec-
tively) and then to resolve the expression values. (Simulations of 
Gaussian laws are performed with the rnorm() function of R.)

1. Number of simulated genes: G = 30000.
2. Percentages of differentially expressed genes: P

u
% of upreg-

ulated genes and P
d
% of downregulated genes.

3. Simulation of M-values from Log-Normal distributions for 

upregulated genes   and downregulated ones :
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Where -1 (resp. 1) implies a 2-fold downregulation (resp. 
upregulation).

4. Simulation of A-values from a Normal distribution: A
g
 ~ 

N(m
A
,s

A
) with m

A
 = 7 and s

A
 = 3.

5. Calculation of gene expression values for conditions 1 and 

2: 
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 and where  X  is the integer immediately 
higher than x.

6. Calculation of simulated M and A-values:
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Step II. This step is dedicated to the simulation of observed 
counts X

gkr
 from previously computed gene expression values and 

Negative Binomial distributions. Simulated Negative Binomial 
random counts are computed with the rnbinom() function of R 
which depends upon 2 parameters: mu for the mean and size for 
the dispersion. (In this case, the variance is linked to the mean by 
the equation mu+mu2/size.)

1. It is assumed that all genes have the same length: L
g
 = 1000 bp.

2. Calculation of transcriptome sizes for conditions 1 and 2 
from Equation (2):

Median ratio normalization method. The computational 
steps of the MRN method aiming at removing the bias due to the 
relative size of studied transcriptomes, are given below. An R pro-
gram of the MRN method is provided within a supplementary 
file (see Section Supplementary Materials). For sake of simplicity, 
the method is here described for 2 conditions (k = 1 and k = 2) 
with the same number of replicates R. Obviously, the MRN 
method can be generalized to an arbitrary number of conditions 
K > 2 with different numbers of replicates.

1. Calculation of weighted means of gene expressions for both 
conditions k ϵ{1,2} and all genes g ϵ{1,...,G}:

∑=
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2. Calculation of gene expression ratios with condition 1 as a 
reference, for all genes g ϵ{1,...,G}: 

3. Calculation of the median of obtained ratios: τ = median
g
 

(τ
g
).
4. Calculation of normalization factors for both conditions k 

ϵ {1,2} (taking into account factor τ) and for each replicate r ϵ 
{1,…,R} (taking into account the sequencing depth N

kr
):
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5. Calculation of adjusted normalization factors to multiply, 
for symmetry, to 1: f

kr
 = e
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/ for k ϵ {1,K = 2} and r ϵ {1,…,R} with
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6. Normalization of counts: X
gkr

/f
kr
.

The theoretical bases of the above computational workflow are 
the followings. Step 1 and Equation (1) imply that the expected 
values of meansE(

gk
)  are equal to μ

gk
L

g
/S

k
. Hence, in Step 2, 

Equation (3) implies that the expected values of ratios E(τ
g
) are 

approximately equal to (μ
g2

/μ
g1

)(S
1
/S

2
) where the bias of the rela-

tive size of transcriptomes is given by S
1
/S

2
. By assuming that 

less than half the genes are upregulated, and less than half are 
downregulated, the median τ of all ratios (calculated in Step 3) is 
then an approximation of S

1
/S

2
. In Step 4, in order to remove this 

bias due to the relative size of transcriptomes, normalization fac-
tors are fixed to e

1r
 for the reference condition (condition 1) and 

to e
2r
 for condition 2. Finally, Step 5 only aims at having adjusted 

factors to multiply to 1 for symmetry (as in ref. 16).
Pipeline for the differential expression analysis. Since the 

objective of the present work is to evaluate the impact of normal-
ization methods on the DE analysis, each of studied data sets was 
analyzed by the application of the same universal pipeline for DE 
analysis. However, the normalization step was obviously different 
for each of the studied methods.

All computations were done with R environment (ref. 13). 
TMM, RLE, UpQu and Medi normalization methods were per-
formed with function calcNormFactors() of the edgeR package. 
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underlined parameters in Step I of the above 
algorithm. Some of these simulated data sets 
are performed with quite extreme situations 
leading to some challenging data sets in 
order to really discriminate the performance 
of studied normalization methods. The full 
parameter details of these 4 simulations are 
given in Table 1. Simulation types 1, 2 and 3 
differ from each other only by the amounts 
of upregulated and downregulated genes: P

u
 

and P
d
. While having the same amount of 

upregulated and downregulated genes, simu-
lation type 4 has a higher mean expression: 
m

u
>m

d
. Theoretically, simulation types 1, 3 

and 4 should result on transcriptomes with 
different sizes. Indeed, for simulation types 1 
and 3, the amount of upregulated genes (P

u
) 

is greater than the amount of downregulated 
ones (P

d
) and, as a consequence of indepen-

dent and identical distributions of simulated 
expressions, S

2
 should be greater than S

1
. For 

the simulation type 4, while the percentages 
of upregulated and downregulated genes are 
the same, the mean expression of upregulated 
genes m

u
 is greater than the mean expression 

of downregulated genes m
d
 and, in turn, S

2
 

should also be greater than S
1
. Only simula-

tion type 2 should have equal transcriptome 
sizes.

An example of a data set from simulation type 1 is shown in 
Figure 1. Panel A shows the MA-plot of simulated gene expres-
sion values μ

gk
 (from Step I). As described in Table 1, 40% of 

genes are upregulated (green dots) with M-values greater than 
1, 20% of genes are downregulated (red dots) with M-values 
less than −1, and then 40% of genes are non DE with M-values 
equal to 0. Panels B, C, and D of Figure 1 display the MA-plot 
of means of observed values (from Step II) with green dots for 
upregulated genes, orange dots for non DE genes and red dots for 
downregulated genes. Panels B, C, and D show an asymmetry of 
M-values due to the greater size of transcriptome in condition 2 
following Equation (3) and implying that the symmetry is not 
around 0 (blue line of Figure 1) but around log

2
(S

1

/S
2
) which is smaller than 0. This is the reason why M-values 

of upregulated, non DE and downregulated genes are all down-
shifted from 0.

The full R program of these simulations is provided on a 
supplementary file (see Supplementary Materials) with param-
eters from simulation type 1. These parameters can obviously be 
changed in order to simulate different biological conditions.

Tomato’s RNA-Seq data set. To investigate the tomato tran-
scriptome dynamics of fruit set, RNA were isolated from flower 
buds and flowers at Anthesis and Post-Anthesis stages. For each 
stage, cDNA libraries were generated from 3 biological replicates 
and subjected to Illumina mRNA-Seq technology sequencing. 
We generated 30–40 million high-quality sequence reads for 
each replicate. A total of 287.5 millions of 101 bp paired-end 
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4. Library sizes of replicates are drawn independently from 
a uniform distribution: N

kr
 ~ U[N

0
,N

1
]with N

0
 = 15 × 106 

and N
1
 = 25 × 106.

5. Calculation of gene expectations from Equation (1): 
E

gkr
 = P

gk
N

kr
.

6. Simulations of gene counts are drawn from Negative 
Binomial distributions: X

gkr
 ~ NB(size,E

gkr
) with size = 10.

In order to test the performance of normalization methods on 
different data sets, we performed 4 simulation types by varying 

Figure 1. MA-plots of a simulated data set. This figure corresponds to a simulated data set from 
simulation type 1 of Table 1. Panel A shows MA-plot of gene expression values (simulated from 
Step I of the simulation algorithm) with green dots for upregulated genes, orange dots for non 
DE genes and red dots for downregulated genes. Panels B, C, and D show the same MA-plot of 
means of observed values (simulated from Step II of the simulation algorithm) with black dots 
for all genes and, respectively, green dots for upregulated genes in panel B, orange dots for 
non DE genes in panel C and red dots for downregulated genes in panel D.

Table 1. Parameters of 4 simulation types

Parameters Type 1 Type 2 Type 3 Type 4

Pu 40% 30% 15% 10%

Pd 20% 30% 5% 10%

Mu 0 0 0 0.5

md 0 0 0 0.1

This table contains parameters of the 4 simulation types studied in the 
paper. Parameters correspond to underlined parameters of Step I of 
the simulation algorithm described in the Methods section (subsection 
Simulation of RNA-Seq Data).
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to the fact that, as described previously, the sizes of the 2 tran-
scriptomes are nearly the same, and consequently, no normaliza-
tion is needed. For simulation types 1, 3, and 4, only MRN seems 
to produce symmetric errors (although less significant for simula-
tion type 1). The other methods, at least for some of the 5 repeti-
tions, produce more false downregulated genes. This drawback is 
due to the non-symmetry of ratios around value 1 for simulation 
types 1, 3, and 4 as quoted in the Methods section (subsection 
Simulation of RNA-Seq Data). Also, as expected, this drawback 
is more important for NoNo and ToCo methods where no nor-
malization for the relative size of transcriptomes is applied.

Mean squared errors. Mean Squared Errors (MSE) of esti-
mated differential expressions (log

2
-ratios) are shown on Figure 

3. Similarly to the performance on false discoveries, the FPKM 
normalization method is producing the worst MSE. Also, in the 
same way, the MRN gives the best results in both consistency 
and robustness: the MRN gives globally the smallest MSE in any 
of the 5 independent simulations.

For simulation type 2, where transcriptomes have the same 
sizes, all methods (except FPKM) give similar results. For simula-
tions types 1, 3, and 4, TMM, TMM50 and RLE seem to have 
the same behavior. Also, NoNo, UpQu, and Medi normalization 
methods are found to be very sensitive to the variability in all 
simulations.

Quantitative results. Table 2 summarizes, for each method, 
the results obtained from the 20 simulations (from the 4 simu-
lation types with 5 independent repetitions for each one). The 

high quality reads: 94 M reads from Bud, 
91M reads from Anthesis and 102M reads 
from Post-Anthesis. Mapping of these 
reads to the Tomato genome sequence 
Sly2.40 was performed by the TopHat 
software with default parameters, at 
most 2 mismatches and no indels allowed 
(refs. Twenty and 18). More than 90% 
of the reads were aligned to the genomic 
sequence. Expressed loci were assessed 
with Cufflinks software with default 
parameters and using the tomato gene 
annotation file iTAG2.30 (refs. 21, 18).

Results

This section is devoted to the compari-
son of results of DE analyses obtained 
with the various normalization methods 
described before on both simulated data 
sets and the tomato’s RNA-Seq data set.

Results on simulated data sets. The 
impact of normalization methods on the 
DE analysis of the 4 different simula-
tion types from Table 1 is presented in 
Figures 2 and 3, and in Table 2. In order 
to compare the variability of the studied 
methods, 5 data sets have been simulated 
and compared for each simulation type. 
As described below, obtained results are remarkably stable for the 
MRN method from one repetition to another and, consequently, 
no more than 5 repetitions seem to be needed. Figure 2 shows the 
number of false discoveries produced by each of the normaliza-
tion methods for each of the simulation types. Figure 3 shows 
the Mean Squared Error (MSE) of each normalization method 
for each of the simulation types, that is, the mean of squared 
differences between ratios of gene expressions obtained by a nor-
malization method and the true ratios of simulated data. Results 
presented in these figures can be obtained with the R program of 
a given supplementary file (see Supplementary Materials). Table 
2 contains, for each method, some interesting indicators as power 
and false positive and negative rates.

Number of false discoveries. Globally, as we can see on 
Figure 2, the total number of false discoveries (maximum ordi-
nate of each graph) is decreasing starting from the simulation 
type 1 toward the simulation type 4. That is obviously due to 
the decreasing amount of DE genes (see Table 1). For any of the 
simulation types, the greatest amount of errors is always associ-
ated to the FPKM normalization method. Another global trend 
is that for all 4 simulation types, the MRN has the smallest num-
ber of errors closely followed by UpQu, Medi, TMM, TMM50, 
and RLE methods. Moreover, the MRN gives also more robust 
results with almost the same number of false discoveries for each 
of the 5 repetitions for each of the simulation types.

For simulation type 2, the differences between normalization 
methods (excepted FPKM) are less important. That is mostly due 

Figure 2. Bar-plots of false discoveries. For each of the 4 simulation types of Table 1, bar-plots of 
above panels show the number of false discoveries of each normalization method for 5 indepen-
dent simulation repetitions (one bar per repetition). With green and red colors, respectively, the 
number of false upregulated and downregulated genes. With orange color, the number of false 
DE genes. False upregulated and false downregulated genes correspond to non-DE genes. In the 
same way, false DE genes correspond obviously to upregulated or downregulated genes.
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Obviously, these results do not intend to validate one or another 
of the studied normalization methods. Nevertheless, this study 
shows interesting links between the different normalization 
methods leading to different groups of methods having the same 
behavior. Moreover, these groups can be compared with those 
obtained in the previous simulation study.

Hierarchical classifications. The 2 upper graphs of Figure 4 
are hierarchical classifications of all studied normalization meth-
ods for both studied transitions. These hierarchical classifications 
are performed with results of each DE analysis (with a type I 
error equal to 5%) by setting to 1 the genes that are upregulated, 
to −1 those who are downregulated and to 0 those who are not 
significantly DE. (Hierarchical classifications are done with the 
R function hclust() with Euclidean distance matrices and argu-
ment method = “complete”.)

We can easily see here that 5 normalization methods seem to 
have the same behavior in both transition studies and are close 

summary was done by adding all genes of all simulations (work-
ing then with a sample size of 20 × 30000 = 600000 genes). 
Excepting the FPKM method, all methods give between 32% 
and 34% of significantly DE genes. The MRN method maxi-
mizes this indicator with 34%. The FPKM method gives about 
20% of significant DE genes. These values are consistent with 
the power to detect a DE gene: the MRN method holds the best 
power value (about 83%) and the FPKM method holds the worst 
one (about 48%). In terms of false positive rate, the FPKM has 
the best result (about 0.62%) followed by the MRN method 
(about 1.17%). Globally, the MRN method seems to give the 
best results.

Results on the tomato fruit set data set. Results of DE anal-
yses performed on the tomato RNA-Seq data with the various 
normalization methods described above are shown on Figure 
4. Panels A and B are related, respectively, to flower Buds to 
Anthesis transition and to Anthesis to Post-Anthesis transition. 

Table 2. Quantitative results

Results NoNo ToCo FPKM UpQu Medi TMM TMM50 RLE MRN

Signif. 0.3279 0.3411 0.1956 0.3237 0.3243 0.3241 0.3243 0.3247 0.3412

Power 0.7898 0.8159 0.4794 0.7858 0.7878 0.7899 0.7917 0.7902 0.8348

F. Pos. 0.0195 0.0241 0.0062 0.0151 0.0149 0.0131 0.0123 0.0139 0.0117

F. Neg. 0.2102 0.1841 0.5206 0.2142 0.2122 0.2101 0.2083 0.2098 0.1652

This table contains, for each method, the rate of significantly DE genes (Signif. = Number of signif. DE genes / Total number of simulated genes), the 
power to detect a DE gene (Power = Number of rightly signif. DE genes / Total number of DE genes), the false positive rate (F. Pos. = Number of false 
positive genes / Total number of non DE genes) and the false negative rate (F. Neg. = Number of false negative genes / Total number of DE genes). We 
notice that F. Neg. = 1 - Power. For Signif. and Power indicators (resp. F. Pos. and F. Neg. indicators), the maximum (resp. minimum) value is bolded in a 
grayed cell, the second one is only bolded, and the minimum (resp. the maximum) value is underlined.

Figure 3. Scatter plots of MSE. For each of the 4 simulation types of Table 1, scatter plots of above panels show the MSE of each normalization method 
for 5 independent simulation repetitions. For each simulation type, each repetition has the same symbol for each normalization method.
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we made is less restrictive than the one made in reference 17, 
which assumes that “the majority of genes are non DE.” The 
same issue has been also addressed by the RLE normalization 
method (ref. 1), which uses also another computational work-
flow. The processing procedure of RNA-Seq data described in 
the present study clearly outperforms comparatively to previous 
methods.

Of particular interest, the notion of relative size is also con-
sidered for high throughput metabonomics and proteomics 
data analyses where count data are commonly used (refs. Four 
and 8).

Based on poor benchmark performance, it clearly emerges 
that the FPKM normalization method should be largely avoided 
in DE analysis. This conclusion is also in agreement with the 
evaluation made by Bullard, Purdom, Hansen and Dudoit 
(ref. 2). Two other normalization methods, UpQu and Medi, 
assessed in our study display poor and very variable perfor-
mances. On the other hand, our study indicated that the use of 
TMM or RLE methods lead to good performance on simulated 
data sets, though giving rise to some variability from one repeti-
tion to another. Finally, the MRN proposed method is found to 
be consistent and robust, producing globally better results that 
are remarkably stable from one repetition to another.

The study also shows that normalization methods globally 
behave similarly when trained with the simulated data sets and 
with the real data sets, which somehow tends to validate our 
simulation approach. In that regard, while, to our knowledge, a 
standard simulation procedure is still lacking, our current work 
provides a unique benchmark simulation procedure that could 
be useful for future researches on transcriptomics, metabolo-
mics and proteomics data analyses.

one from another: TMM, TMM50, UpQu, 
Medi, and RLE. The MRN, ToCo and NoNo 
normalization methods are close to the 5 meth-
ods cited above but not in the same way for both 
transitions. It is also obvious here that the FPKM 
normalization method is always far from the 
others.

Bar-plots. The 2 bottom graphs of Figure 4 
are bar-plots of numbers of significantly DE genes 
for each normalization method for both studied 
transitions. Globally, the amount of DE genes 
is greater between Anthesis and Post-Anthesis 
stages. Nevertheless, behaviors of normalization 
methods seem to be the same in both transitions.

The FPKM normalization method gives a less 
amount of DE genes. On the contrary, MRN and 
ToCo give the greater amount of DE genes. Also, 
once again, TMM, TMM50, UpQu, Medi, and 
RLE normalization methods seem to have the 
same behavior.

We notice here that these global behaviors of 
our normalization methods (both on hierarchical 
classifications and bar-plots) were also encoun-
tered in the simulation study, which would tend 
to validate the simulation approach.

Moreover, for these bar-plots, for each normalization method, 
each color (Fig. 4) represents the amount of normalization meth-
ods that have the same common DE genes. For example, dark 
green color represents the number of DE genes that are com-
mon for all methods. We can then see that about 2500 and 4000 
genes are common for all normalization methods for the first and 
the second transition respectively. That roughly represents up to 
50% of common DE genes (for both transitions), which under-
lines the great importance of an accurate normalization method. 
In the same way, white color represents the number of sp.ecific 
DE genes. Here, the MRN gives the great amount of sp.ecific 
DE genes (650 and 800 for the 2 transitions). The other methods 
seem not to give sp.ecific DE genes or a few ones for the ToCo 
method in the first transition.

Discussion

In this paper, we identified and discussed an important issue 
related to RNA-Seq data normalization for differential gene 
expression analysis. Simulated data analysis revealed that the 
bias due to the relative size of transcriptomes leads to poor 
estimations of ratios of gene expressions, and consequently to 
biased DE analysis. To address this issue, we benchmarked the 
performance of the most widespread normalization methods 
together with a novel proposed method named “Median Ratio 
Normalization” (MRN).

The newly established method is a modified version of the 
normalization method already proposed by Robinson and 
Oshlack (ref. 17), where authors also stressed the need to remove 
the bias due to the relative size of transcriptomes, but proposed 
a different computational workflow. Moreover, the assumption 

Figure 4. Results of the DE analyses on tomato RNA-Seq data. Results of the DE analyses 
on tomato RNA-Seq data for both studied transitions: from Bud to Anthesis (on the left) 
and from Anthesis to Post-Anthesis (on the right).
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the networking activities within the European funded COST 
ACTION FA1106 “QualityFruit.”

Supplementary Materials

The reader is referred to the online Supplementary Materials for 
the 3 R programs (ref. 15) described below:

• Simulation of RNA-Seq data. Supplementary file 1 contains 
an R program for the simulation algorithm described and used 
in this paper. Parameters actually correspond to simulation type 
1 (see Table 1), but can easily be changed in order to carry out 
other simulation types.

• Normalizations and differential expression analyses. 
Supplementary file 2 contains an R program for differential 
expression analyses with all the 9 normalization methods studied 
in this paper. This program can be directly executed with the 
output of Supplementary file 1.

• Some graphical results. Supplementary file 3 contains an R 
program providing some graphical results of differential expres-
sion analyses performed with the various normalization methods 
studied in this paper. This program can be directly executed with 
the output of Supplementary file 2.

Supplementary material may be found here:  
http://www.landesbioscience.com/journals/cib/article/25849/

We notice here that, independently to the normalization 
method used, the issue of isoform switch can influence the 
expression results, leading to erroneous DE analysis. Indeed, 
read counts calculation may change depending on the data treat-
ment applied prior to the normalization step. This is obviously an 
important issue but not considered in our paper since it is prior to 
the normalization step.

Finally, we wanted to draw attention on the recent article 
written by Dillies, Rau, Aubert, Hennequet-Antier, Jeanmougin 
et al., (ref. 5), which appears when we were writing the present 
article. In this paper, the authors also give an interesting evalu-
ation of normalization methods for RNA-Seq data analysis. We 
find that many of the results described in this article are consis-
tent with our own results. Obviously, the MRN method that we 
propose here is not evaluated.
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